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Abstract
Ce mémoire de master explore l’utilisation des projections stochastiques en tant
qu’outil de gestion des risques et d’évaluation financière, avec une application spé-
cifique à Novartis. Il analyse de manière critique l’efficacité des méthodes DCF
enrichies par des projections stochastiques des FCFF, ainsi que la dynamique des
rendements boursiers à l’aide de modèles stochastiques. Ces deux approches sont
comparées aux moyennes des estimations des analystes qui utilisent des modèles
DCF basés sur des prix cibles ponctuels. En utilisant des données historiques pour
modéliser les futurs prix des actions, ce travail prend Novartis comme étude de cas
pour déterminer si la médiane des prix obtenus par les deux types de projections
stochastiques offre des prévisions plus ou moins précises que la moyenne des prix
cibles proposés par les analystes. À travers une analyse quantitative, cette étude
vise à fournir une compréhension nuancée de la fiabilité prédictive de ces méthodes
d’évaluation financière.

This Master’s thesis explores the application of stochastic projections as a risk man-
agement and financial valuation tool, with a specific application to Novartis. It
critically analyses the efficiency of DCF methods enhanced by stochastic projec-
tions of FCFF, as well as the dynamics of stock returns using stochastic models.
These two approaches are compared with the average estimates of analysts who
use DCF models based on point target prices. Using historical data to model fu-
ture stock prices, this work takes Novartis as a case study to determine if median
prices obtained by the two types of stochastic projections offer more or less accurate
forecasts than the average target prices proposed by analysts. Through quantita-
tive analysis, this study aims to provide a nuanced understanding of the predictive
reliability of these financial valuation methods.

i



Contents

1 Introduction 1

1.1 Analysis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 FCFF Projections 2

2.1 FCFF and valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Polynomial Regressions on FCFF . . . . . . . . . . . . . . . . . . . . 3

2.3 AR Model on FCFF . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Stationnarity test of FCFF . . . . . . . . . . . . . . . . . . . . 4

2.3.2 ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.3 AR model settings . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.4 Tests on the residuals of the AR model . . . . . . . . . . . . . 7

2.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Projections by distribution of changes in FCFF . . . . . . . . . . . . 9

2.5 Discount rate - WACC . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 WACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Monte-Carlo simulation on DCF . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Principle and assumptions . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Applying Monte Carlo simulation to FCFF . . . . . . . . . . . 14

2.6.3 One-year price distribution . . . . . . . . . . . . . . . . . . . . 14

3 Stochastic projection of returns 16

3.1 Choice of sample period . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Analysis of returns . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Types of Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Normality Test - Jarque-Bera Test . . . . . . . . . . . . . . . . . . . . 20

3.4.1 QQ-Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



3.5 Fitting distributions on returns . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Observation on nc parameter . . . . . . . . . . . . . . . . . . 23

3.6 Autocorrelation Test - Ljung-Box test . . . . . . . . . . . . . . . . . . 24

3.6.1 Ljung-Box test formula . . . . . . . . . . . . . . . . . . . . . . 24

3.6.2 Interpretation of results . . . . . . . . . . . . . . . . . . . . . 25

3.6.3 Cluster of volatility . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 GARCH Model settings . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Monte-Carlo simulation on Returns . . . . . . . . . . . . . . . . . . . 30

3.8.1 Observations in relation to empirical averages and medians . . 31

4 Statistics Final Price Distribution 32

5 Backtesting In-Out Sample 33

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Meaning on the market efficiency hypothesis . . . . . . . . . . . . . . 34

5.4 Complementarity with analysts . . . . . . . . . . . . . . . . . . . . . 35

5.5 Analyst bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 37

6.1 Distribution of actual daily returns and one-year price . . . . . . . . . 37

6.2 Our approximation of real distributions . . . . . . . . . . . . . . . . . 38

6.3 Distribution of analysts’ target prices . . . . . . . . . . . . . . . . . . 38

6.4 Comparison of one-year price distributions . . . . . . . . . . . . . . . 39

6.4.1 Impossibility of determining the quality of the models . . . . . 40

6.5 Taking speculative positions on statistical convictions . . . . . . . . . 41

iii



List of Figures
1 Polynomial Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 ACF and PACF on historical FCFFs . . . . . . . . . . . . . . . . . . 5

3 Application of AR models . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Residuals of AR(1) Model . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Autocorrelation of AR model residuals . . . . . . . . . . . . . . . . . 8

6 Distribution of FCFF variations . . . . . . . . . . . . . . . . . . . . . 9

7 Projections of FCFF . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Novartis Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9 PDF of final prices (based on FCFF) . . . . . . . . . . . . . . . . . . 14

10 Type of Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11 QQ-Plot on NVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

12 Distribution Fits on NVS . . . . . . . . . . . . . . . . . . . . . . . . . 22

13 NVS Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 Conditionnal Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 29

15 MCS on NVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

16 All pdf of final prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

17 NVS & VIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

18 Correlation between NVS and VIX . . . . . . . . . . . . . . . . . . . 62

19 Varing Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



Abbreviations
NVS Novartis

IQR Interquartile Range

MAD Median Absolute Deviation

DCF Discounted Cash Flow

FCFF Free Cash Flow to the Firm

MCS Monte-Carlo Simulation

WACC Weighted Average Cost of Capital

CAPM Capital Asset Pricing Model

AIC Akaike Information Criterion

TGR Terminal Growth Rate

AR Auto Regressive

GARCH Generalized AutoRegressive Conditional Heteroskedasticity

ACF AutoCorrelation Fonction

PACF Partial AutoCorrelation Fonction

VaR Value at Risk

CVaR Conditionnal Value at Risk

PDF Probability Density Fonction

v



1 Introduction
1.1 Analysis objective
Research objective

The main objective of this research is to examine and compare two approaches to
the financial valuation of equities on the stock markets. We will analyse the results
obtained using the traditional Discounted Cash Flow (DCF) method, which is com-
monly used by financial analysts to incorporate forecasts of fundamental elements
such as expenses, income and capital expenditure. These results will be compared
with those from two methods based on stochastic projections, which are based on
statistical assumptions rather than on specific judgements about the company’s fu-
ture performance. The effectiveness of these methods will be assessed by comparing
them with actual market share prices, providing a direct measure of their predictive
accuracy. We will use Novartis as the basis of analysis for this research.

More specifically, the aim of this work is to determine whether analyst consensus
price estimates, using DCF models, provide more accurate or less accurate predic-
tions of the true share price compared to methods that use stochastic Free Cash
Flows to Firm (FCFF) projections embedded in a DCF framework to provide val-
uation. In addition, we will analyse the dynamics of stock returns using historical
price data to project future share prices. This will allow us to juxtapose an ap-
proach based on historical fundamental data (FCFF) with another that focuses on
historical share price dynamics.

Research question

The research question is: "Are median stochastic projections, as a pricing method,
more accurate than analyst price valuations performed by traditional DCFs?" This
question guides our exploration of the various valuation strategies and aims to iden-
tify which of these methodologies offers the greatest accuracy and reliability in
forecasting share prices.
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2 FCFF Projections
2.1 FCFF and valuation

Free Cash Flow to the Firm (FCFF) is a crucial financial indicator for assessing
a company’s intrinsic value. FCFF represents the amount of cash a company can
generate after covering its operating expenses and capital investments, but before
meeting its financial charges such as interest payments. This measure provides a
clear picture of the company’s ability to generate free cash flow to repay creditors,
pay dividends and reinvest in its operations without having to resort to new debt
or external financing.

To calculate FCFF, we generally start with earnings before interest, tax, depreci-
ation and amortisation (EBITDA), then subtract the tax that would have been paid
if the company had no debt (EBIT(1-Tax rate)). From this, we then subtract capital
investment (capital expenditure) and add changes in working capital requirements,
to obtain the free cash flow available to all the company’s suppliers of capital.

The use of FCFF is particularly relevant in the Discounted Cash Flow (DCF)
valuation method. This approach is based on the idea that the value of a company
is essentially the present sum of all its future cash flows available to repay investors
after financing operations and growth. The company’s future cash flows are esti-
mated for a typical projection period (often 5 to 10 years) and then discounted at
a rate that reflects the risk associated with those cash flows. This rate is generally
the company’s weighted average cost of capital (WACC), which incorporates the
cost of debt and the cost of equity according to their respective proportions in the
company’s financing structure.

The discounting process converts future cash flows into a net present value
(NPV), providing an estimate of the total value of the business, including its debt.
To arrive at the equity value, net debt (total debt less cash equivalents and short-
term investments) is subtracted from the enterprise value obtained. This equity
value is particularly useful for shareholders because it allows them to compare the
current market value of the company’s shares with the value calculated from the
FCFF, to judge whether the shares are overvalued, undervalued, or correctly val-
ued.

The main advantage of using FCFF in DCF models is that they are not affected
by the company’s capital structure. This provides a purer measure of the company’s
economic performance, independent of how it is financed. However, this method
assumes an ability to accurately estimate future cash flows and the appropriate

2



discount rate, a task often complicated by the uncertainty of economic forecasts and
market fluctuations.

The FCFF formula is as follows:

FCFF = EBIT − Taxes + Depreciation − CAPEX − ∆NWC

2.2 Polynomial Regressions on FCFF

We applied degree 1-3 polynomial regressions to project FCFF over a ten-year pe-
riod. The image clearly shows this analysis, with historical data for Novartis FCFF
from 1996 to 2023, followed by projections to 2033 based on different regression
models.

Figure 1: Polynomial Regressions

First-degree polynomial regression, or linear regression, is the simplest and most
straightforward form of analysis. In this model, the FCFF is predicted from a linear
relationship with time, suggesting constant growth over the years. This method is
often used for its simplified approach and ease of interpretation, as shown by the
blue line on the graph, which offers a general view of the direction cash flows could
take, assuming that past conditions continue without major changes.

By switching to a second-degree polynomial regression, we introduce a quadratic
term that captures curvature effects in the historical data. This can reflect periods of
accelerated growth or slowdown, providing a more nuanced picture of the dynamics
of a time series.

Third-degree regression adds a further cubic term, allowing even greater flexi-
bility in modelling a time series. This model, represented by the red curve in the
image, can theoretically adjust for complex patterns such as oscillations or trend re-
versals that might occur as a result of significant changes in the company’s economic,
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regulatory or market environment. However, while this model offers increased adapt-
ability, it can also be prone to problems of overfitting, where the model conforms
too closely to historical data, compromising its ability to correctly predict future
trends.

However, it is crucial to note that increasing the degree of polynomial regression
does not necessarily imply better prediction. Indeed, although higher degree models
may appear to fit historical data better, they may also become overly sensitive to
minor fluctuations or anomalies in the data, leading to forecasts that appear unlikely
or highly volatile for future years. This is particularly evident in the case of third-
degree forecasts, where projections decrease exponentially.

In sum, although polynomial regressions offer a useful tool for sketching future
trends based on past performance, it is essential to choose the degree of the regression
with caution. A model that is too simple may not capture the full complexity of
the data, while one that is too complex may lead to unrealistic predictions. The
image shows this dilemma, with FCFF projections becoming increasingly unstable
and unrealistic as the degree of regression increases.

2.3 AR Model on FCFF
2.3.1 Stationnarity test of FCFF

Another technique for projecting FCFF is to parameterise an AR model. However,
before parameterising an AR model, it is necessary to test the stationarity of the time
series. The ADF (Augmented Dickey-Fuller) test was used to assess the stationarity
of the FCFF. The results show an ADF statistic of 0.686 and a p-value of 0.989,
well above the 0.05 threshold. The critical values at 1%, 5% and 10% are -3.724,
-2.986 and -2.633 respectively. Since the p-value is very high and the ADF statistic
is above the critical values, the time series is non-stationary. This implies that this
non-stationarity may pose problems for the parameterisation of the AR model, as
AR models generally require stationary series to produce reliable results.

2.3.2 ACF and PACF

The graph below shows the autocorrelation function (ACF) and partial autocorrela-
tion function (PACF) of the FCFF. These tools are used to identify the structure of
time dependence in the data and to determine the appropriate order of time series
models, such as AR (Autoregressive) models.

On the left-hand graph, we have the ACF, which shows the correlation of current
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Figure 2: ACF and PACF on historical FCFFs

observations with the values at different lags. We can see that the values at lags 1 to
3 are relatively higher than the others, suggesting a certain correlation between the
current ACF values and those of the previous period. However, these correlations
at lags 1 to 3 are not excessively strong. The other blue bars representing the other
correlations are also present, but less significant.

The graph on the right represents the PACF, which measures the correlation of
observations with past lags, after eliminating the effects of intermediate lags. Here
too, lag 1 appears to be more significant than the others, slightly exceeding the
limits of the confidence interval, while the subsequent lags remain broadly within
the limits, indicating that their direct influence is less after taking lag 1 into account.

This analysis suggests that the FCFF data show a slightly more noticeable depen-
dence on lag 1, although this dependence is not extremely pronounced. Therefore,
an AR(1) model seems to be a reasonable choice to capture the dynamics of the
data, as it takes into account the relationship between the current FCFF values and
the values of the previous period. However, given that lag 1 is not clearly significant,
it may be beneficial to also explore other models or refine the AR(1) model to ensure
that it best represents the characteristics of the time series.

2.3.3 AR model settings

The formula for the first-order AR model for FCFF is given by :

FCFFt = α + ϕFCFFt−1 + εt

where α = 6556.7892 (p-value = 0.000) and ϕ = 0.3705 (p-value = 0.028). εt

represents the error term at year t.

We applied the AR(1) model to Novartis’ historical FCFF to assess its ability to

5



predict future cash flows. For comparison, a second-order AR model (AR(2)) was
also used. The image shows the predictions of both models against the actual FCFF
values. The blue dots represent the actual FCFF values, while the orange and green
dotted lines represent the predictions of the AR(1) and AR(2) models respectively.

Figure 3: Application of AR models

The confidence intervals, illustrated by the shaded areas around the predictions,
correspond to one standard deviation for the residuals, providing an indication of
the uncertainty associated with the predictions. The confidence interval for AR(1)
is shown in blue, while that for AR(2) is in green. These intervals show the expected
variability around the predictions, indicating where the actual values of the FCFF
could lie with a certain level of confidence.

Comparing the two models, we can see that the AR(1) model offers predictions
that closely follow the general trend of the historical data, but with certain limita-
tions in terms of accuracy. The AR(2) model, while offering a slight improvement
in some cases, also shows similar challenges. Both models capture broad trends but
may have difficulty predicting the steeper variations observed in real data. These
analyses provide a better understanding of the strengths and limitations of AR
models for forecasting corporate cash flows.
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2.3.4 Tests on the residuals of the AR model

Analysis of the residuals from the AR(1) model fitted to the data shows that they
do not follow a normal distribution. After fitting the regression model to the FCFF
data, the residuals were extracted to perform a normality test.

Figure 4: Residuals of AR(1) Model

The test used to examine the normality of the residuals is the Shapiro-Wilk test,
which evaluates the null hypothesis that the residuals are normally distributed. The
test result shows a very high statistic and an extremely low p-value (p < 0.05),
clearly indicating that the normality hypothesis must be rejected. This means that
the distribution of the residuals deviates significantly from a normal distribution,
which could affect the validity of certain statistical tests or confidence intervals based
on the assumption of normality.

Analysis of the ACF and PACF graphs of the AR model residuals (below) shows
that the AR model has succeeded in reducing the autocorrelation present in the
initial FCFF time series, although some lags show variations.

In the graphs, we observe that the first two lags of the residuals have a lower
autocorrelation compared to the initial time series. This indicates that the AR
model has succeeded in capturing and effectively modelling short-term temporal
dependencies.

However, the third lag of residuals shows a slightly higher autocorrelation than
that observed in the initial time series. This increase in autocorrelation at the third
lag could suggest that the AR model has not completely eliminated all temporal
dependencies or that there are structures in the data that the AR model has not
fully captured.

In summary, although the AR model has reduced the autocorrelation of the first
two lags, the third lag shows a higher autocorrelation than in the original time series.
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This indicates that, despite an overall improvement, some temporal dependencies
remain, perhaps requiring further investigation or additional adjustments to the
model.

Figure 5: Autocorrelation of AR model residuals

2.3.5 Conclusion

In conclusion, the use of the AR model to predict Novartis FCFF presents mixed
results. Although the ACF and PACF analysis showed that the AR model reduced
some of the autocorrelations present in the initial time series, particularly for the
first two lags, the autocorrelation at the third lag of the residuals is higher than in
the initial time series. This suggests that the AR model has not fully captured all
the temporal dependencies.

Furthermore, although autocorrelation is present in the data, it does not seem
significant enough to fully justify the use of an AR model. This low significance of
autocorrelation limits the effectiveness of the AR model for this time series.

Another crucial point is that the residuals of the AR model do not follow a
normal distribution. This non-normality of the residuals is problematic because it
prevents a correct simulation of the forecast uncertainty of the AR model. A non-
normal distribution of residuals compromises the validity of confidence intervals and
statistical tests based on the normality assumption.

In sum, the results obtained indicate that the AR model does not provide suf-
ficiently robust and reliable forecasts for the Novartis FCFF, due to the low sig-
nificance of the autocorrelation and the non-normality of the residuals. It would
be appropriate to explore other models or approaches to improve the accuracy of
forecasts and the representation of uncertainty.
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2.4 Projections by distribution of changes in FCFF

Rather than using an econometric model to project the FCFF with residuals that
fail to be normally distributed, we have chosen to model variations in the FCFF
directly from one year to the next by fitting a Student distribution (t-Student). The
t-Student distribution allows us to better capture the central concentration with a
very low degree of freedom, unlike the normal distribution. The following image
illustrates this approach, showing the time series of percentage variations in the
Novartis FCFF and the histogram of these variations with the t-Student fit.

Figure 6: Distribution of FCFF variations

On the basis of the parameters of the Student distribution (t-Student) ad-
justed for variations in the FCFF, we can make random projections of future vari-
ations using this distribution. The formula used for these projections is as follows:
FCFFt = FCFFt−1 × (1 + ϵt), where ϵt follows a t-Student distribution with param-
eters µ = 0.0501, σ = 0.0923, and df = 1.22.

Applying this formula, we generate (in the image below) several time series of
projected FCFF for the period 2024 to 2033, allowing us to visualise different possible
trajectories of Novartis FCFF. The image shows the results of a 10-year Monte Carlo
simulation based on t-student adjusted FCFF variations.

The blue dots represent the historical series of FCFF from 1996 to 2023. The
dark blue lines represent various individual trajectories randomly generated during
the Monte Carlo simulation. The red line illustrates the median FCFF projections,
while the green and orange lines show the 25th and 75th percentiles of the pro-
jections respectively, indicating the pessimistic and optimistic scenarios among the
projections.

The aim of this simulation is to produce several time series of projected FCFF
for the years 2024 to 2033. These time series will then be discounted to one year
(December 2024 or January 2025) using the discounted cash flow (DCF) method.
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This approach better captures the uncertainty and potential variability of DCFs,
thus providing a range of possible values for the Novartis financial valuation.

Figure 7: Projections of FCFF

2.5 Discount rate - WACC

To discount our projected FCFF, we will need an appropriate discount rate. In order
to do this, we need to calculate the WACC (Weighted Average Cost of Capital).

2.5.1 Beta

The graph shows a linear regression of the logarithmic daily returns of Novartis
(NVS) against the logarithmic daily returns of the Swiss Market Index (SMI). The
regression line is used to determine the Beta of Novartis.

To begin with, we calculated the daily total log-returns for Novartis and the
SMI. The log-return is given by the formula:

Total Log-Return = ln
(

Adj Closet

Adj Closet−1

)

where Adj Closet is the closing adjusted price at time t.

We then performed a linear regression of Novartis returns (y-axis) against SMI
returns (x-axis). The linear regression gives us a straight line of the form:

y = α + βx

where y is the Novartis return, x is the SMI return, α is the intercept and β is the
slope of the line.

The slope of the regression line, indicated by β, represents the Beta of Novartis.
Beta measures the sensitivity of Novartis returns to market returns represented by
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the SMI. In the graph, the regression line is given by:

y = 0.0002 + 0.6123x

Here, β = 0.6123. This means that for every 1% change in the SMI, the Novartis
return changes by an average of 0.6123%. A Beta of 0.6123 indicates that Novartis
is less volatile than the market (SMI). If β > 1, this would mean that Novartis is
more volatile than the market. If β < 1, as is the case here, Novartis is less volatile.

The red line on the graph represents the regression line, and the equation for
the line is y = 0.0002 + 0.6123x. The blue dots represent the actual daily returns of
Novartis compared to the daily returns of the SMI.

In conclusion, we have found the Beta of Novartis from the logarithmic daily
returns using simple linear regression, and the Beta is 0.6123, which will be used in
the calculation of the WACC.

Figure 8: Novartis Beta
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2.5.2 WACC

This table shows the calculation of the WACC of Novartis, using different financial
components.

Table 1: WACC

Cost of Equity (CAPM)
10-year risk-free rate (Rf ) 0,040
Levered Beta (β) 0,612
Equity Risk premium (ERP) 0,055
Country Risk Premum (CRP) 0,000
Cost of Equity (Re) 0,074
% of Equity 0,791

Cost of Debt
SP Global Ratings of Novartis AA
Cost of Debt 0,052
% of Debt 0,209
Corporate Tax Rate 0,180

WACC 0,067

The risk-free rate used, 4%, comes from the Federal Reserve Bank of Saint-Louis1

for 10-year bonds. The Levered Beta calculated is 0.612. The Equity Risk Premium
and Country Risk Premium are taken from the work of Aswath Damodaran2. The
Cost of Equity, calculated using the CAPM, is 0.074, representing the return ex-
pected by shareholders. The proportion of equity financing is 79.1%. The financial
strength of Novartis is recognised with an ‘AA’ rating from Standard & Poor’s3.
The cost of debt of 0.052 is based on current market conditions and Novartis fi-
nancial documents. The capital structure includes 20.9% debt. The corporate tax
rate is 18%. This information provides a basis for estimating the WACC of Novar-
tis at 6.7%. All fundamental values are calculated directly from Novartis financial
documents.

1https://fred.stlouisfed.org
2https://www.stern.nyu.edu
3https://www.novartis.com
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2.6 Monte-Carlo simulation on DCF
2.6.1 Principle and assumptions

To estimate the share price using the DCF model, we apply a discounting method
starting from the year 2025. In our analysis, the FCFF for the years 2025 to 2033
are the only ones taken into account for discounting. The FCFF for 2024 is not
included, as it represents the current reference year, and therefore does not need to
be discounted for a one-year assessment.

By incorporating these discounted FCFFs into a Monte Carlo simulation (in-
cluding a terminal value), we can dynamically assess the impacts of these future
flows. This method makes it possible to address uncertainties and model various
potentially impactful scenarios. By discounting each FCFF from 2025 to 2033 to
reflect its value in 2025 (late 2024 or early 2025), we obtain enterprise values.

Once we have obtained these discounted cash flows, we divide them by the total
number of shares in the company to obtain directly the expected share price for
the year 2025. This division transforms the sum of the discounted values into an
estimate of the price per share, providing a direct and relevant measure of value for
investors.

The formula for the price of a share in one year’s time by discounting FCFF is
given by :

P1 =
∑n+1

t=2
F CF Ft

(1+r)t−1 +
F CF Fn+1×(1+g)

r−g

(1+r)n

N

where :

• ∑n+1
t=2

F CF Ft

(1+r)t−1 represents the discounted sum of the FCFF, which we discount
to next year.

• g is the terminal growth rate.

• r is the discount rate (WACC)

• N is the total number of shares.

• n : Number of years of FCFF projections.
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2.6.2 Applying Monte Carlo simulation to FCFF

The parameters presented in the table below summarise those used in the Monte-
Carlo simulation. They concern both the simulation of variations in FCFF (param-
eters of the t-Student law), and the parameters for updating the simulated FCFF.

Table 2: Monte-Carlo DCF Parameters

Parameters Values
WACC 6.70%
TGR 2.00%
Historical Mean of variation 5.01%
Historical Volatility of variation 9.23%
Degree of freedom of variations 1.22
Inital FCFF (mio $) 11864
Number of shares 2044000000
Number of projected years 10
Number of simulations 10000

2.6.3 One-year price distribution

The probability density function (PDF) of the final prices was modelled using an
asymmetric t-distribution, as shown in the image below. This choice of distribution
is significant because it takes into account the asymmetry of possible outcomes.
The asymmetry suggests that there is a non-negligible probability of above-average
results, which corresponds to the fact that the average price is higher than the
median.

Figure 9: PDF of final prices (based on FCFF)

This asymmetry can be interpreted as market sentiment indicating that, despite
potential risks, there is optimism for significant upward movements, probably due
to favourable market or company-specific catalysts. The degree of freedom and
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non-centrality parameters indicate the level of kurtosis and skewness respectively,
providing information on the tail risk - the probability of extreme outcomes.

The results of the Monte-Carlo simulation of FCFF indicate that the projected
median share price is $106.62. This median value is a crucial point of comparison
with the average of $111.04, highlighting a possible asymmetry in the distribution of
possible outcomes. Given that the current share price at the end of 2023 is $100.97,
the projected median implies a potential return of 5.6% over the year.
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3 Stochastic projection of returns
3.1 Choice of sample period

When we project returns, we define their dynamics in terms of observed empirical
characteristics. However, it is essential to choose the length of the sample period
carefully. Opting for a longer period means that the dynamics of the stock faith-
fully reflect the entire period under consideration. If the stock shows a particularly
marked trend and we wish to accentuate this trend in the stochastic projections, it
may be wise to select a shorter sample period. This avoids diluting recent strong
directional returns with an average. The choice of sample length is therefore crucial
and should be adapted to give a more specific drift, depending on analytical needs.

Continuing with this logic of selecting the sample period for return projections,
let’s look at two hypothetical examples of companies that illustrate the importance
of this approach: a mature company and a very fast-growing company.

Let’s start with a mature company. For such a company, share price fluctuations
may be relatively stable and predictable, reflecting moderate growth and regular
revenues. In this case, choosing a long sample period for return projections is ap-
propriate. This allows a full range of economic cycles and market fluctuations to be
incorporated, providing a holistic view of company performance that helps stabilise
projections by smoothing out short-term anomalies. In contrast, consider a company
in the technology sector, characterised by very strong growth. For such a company,
shares may show extremely volatile price fluctuations due to rapid innovation, regu-
latory changes, or market reactions to new product announcements. In this context,
using a shorter sample for stochastic projections may be more relevant. This allows
recent and more relevant trends to be captured without being obscured by histor-
ical data that may no longer reflect the company’s current situation. In this way,
projections place greater emphasis on recent growth dynamics and are potentially
more accurate in predicting future returns in a fast-changing environment.

In summary, the selection of the sample period is crucial and must be adapted
to the specific context of each company. It has a direct impact on the accuracy
and relevance of return projections, particularly in scenarios where companies go
through very divergent growth phases.

For Novartis, given that the company is considered to be in a mature phase, we
opt for a period that encompasses the main economic crises in order to incorporate
these events into the probabilities of our analyses. The period selected runs from
1997 to 2023 inclusive.
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3.2 Statistical properties

The following table shows the statistical properties of Novartis’ logarithmic returns
from 1997 to 2023. The statistics are calculated at three different frequencies: daily,
monthly and annually.

Table 3: Summary statistics of log-returns for Novartis (NVS)

Statistic Close Adjusted Close
Daily frequency (6,793 observations)

Mean (%) 0.020 0.031
Median (%) 0.025 0.035
Standard Deviation (%) 1.355 1.346
MAD (%) 0.705 0.706
IQR (%) 1.411 1.410
Ann. mean (%) 5.091 7.767
Ann. std. dev. (%) 21.512 21.369
Skewness 0.025 0.064
Kurtosis 7.555 7.654

Monthly frequency (323 observations)
Mean (%) 0.422 0.646
Median (%) 0.823 1.089
Standard Deviation (%) 5.210 5.213
MAD (%) 3.675 3.459
IQR (%) 7.370 7.265
Ann. mean (%) 5.067 7.746
Ann. std. dev. (%) 18.049 18.059
Skewness -0.329 -0.324
Kurtosis 3.493 3.513

Annual frequency (26 observations)
Mean (%) 3.918 6.692
Median (%) 5.872 9.211
Standard Deviation (%) 13.554 13.885
MAD (%) 8.642 8.446
IQR (%) 18.301 19.309
Skewness -0.587 -0.709
Kurtosis 2.817 3.128
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3.2.1 Analysis of returns

In analysing the statistical properties of Novartis’ logarithmic returns between 1997
and 2023, it is crucial to distinguish between the results obtained from “Close” and
“Adjusted Close” prices. The differences observed in the two data series reflect
adjustments for corporate events such as dividends, etc., which can significantly
influence the calculated returns.

For the daily data, we observe that the average return for the adjusted price (0.031%)
is slightly higher than that for the closing price (0.020%). The calculation of the
median also shows a slight increase for the adjusted price (0.035% versus 0.025%),
suggesting a positive impact from the reinvestment of dividends.

In terms of the dispersion of returns, measured by the standard deviation and MAD
(Mean Absolute Deviation), the values are very close between the two sets of data,
indicating that the adjustments do not substantially affect the overall volatility
of returns over the 3 frequency types. This means that the type of price has an
implication on the drift of the time series and not on the volatility.

When we look at the annual data, the difference becomes more marked. The mean
of adjusted returns (6,692%) is significantly higher than that of unadjusted returns
(3,918%), with a standard deviation that is also higher (13,885% versus 13,554%).
This shows that dividends have a significant impact on returns measured over long
periods.

As far as skewness and kurtosis are concerned, the differences between closing and
adjusted prices are not very pronounced, indicating that the distribution patterns
of returns remain relatively similar despite the adjustments. This further reinforces
the finding of the impact on drift rather than their fundamental distribution.

In conclusion, the statistics show that although adjusted and unadjusted prices
follow similar patterns in terms of distribution, the adjustments affect measures of
central tendency, particularly over longer periods. This highlights the importance
of correctly choosing the time series to use in order to utilise the correct statistical
properties.
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3.3 Types of Price

We saw earlier that it is essential to choose the right type of price when modelling
the future path of a company’s share price. Indeed, the choice of price data directly
influences the accuracy and relevance of our projections. For our analysis, we focus
on unadjusted prices (‘Close’).

Our aim is to model the dynamics specific to the share price, without incorporat-
ing the additional returns linked to reinvested dividends. By using these unadjusted
prices, we can capture only the real variations in the share price, giving us a clearer
and more accurate picture of its evolution in the market.

Adjusted prices, on the other hand, are particularly useful when we want to
calculate overall performance and compare a company’s performance with that of
other companies or with benchmark indices. Adjusted share prices make it possible
to measure total return, which is relevant in comparative contexts. However, it is
not this overall dynamic that interests us here. We seek to isolate and analyse the
pure trajectory of the share price without the influence of dividends, in order to
better understand its intrinsic evolution on the market.

Figure 10: Type of Price
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3.4 Normality Test - Jarque-Bera Test

We perform a normality test on Novartis returns to assess whether the data follows
a normal distribution. Financial returns are rarely normal, and this check is crucial
for our modelling. Indeed, if the returns are not normal, we will have to adjust
our analysis methods and choose more suitable models to take account of this non-
normality and improve the accuracy of our forecasts.

The following table presents this analysis of the normality of logarithmic returns
for Novartis. The normality tests, carried out at various frequencies (daily, monthly
and annually), include the calculation of skewness, kurtosis and the results of the
Jarque-Bera (JB) test, together with the associated p-values. These statistical indi-
cators are crucial for assessing the distribution of returns on these companies’ shares
over different periods.

The JB statistic is calculated using the following formula:

JB = n

(
S2

6 + (K − 3)2

24

)

where n is the number of observations, S is the skewness, and K is the kurtosis.

Table 4: Normality tests for log-returns of NVS

Value
Daily frequency (6,793 observations)

Skewness 0.025
Kurtosis 7.555
JB 5872.937
P-Value 0.000

Monthly frequency (323 observations)
Skewness -0.329
Kurtosis 3.493
JB 9.093
P-Value 0.011

Annual frequency (26 observations)
Skewness -0.587
Kurtosis 2.817
JB 1.531
P-Value 0.465

The p-value for the Jarque-Bera test is calculated using the chi-square distribution
with two degrees of freedom. For a test statistic JB, the p-value is given by the
following formula:

p-value = P (X2
2 > JB)
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where X2
2 is a variable which follows a chi-square distribution with 2 degrees of

freedom.

This formula is used to determine the probability of observing a value of the JB

statistic as extreme or more extreme under the null hypothesis that the data follow
a normal distribution.

3.4.1 QQ-Plot

This QQ-plot shows the distribution of Novartis daily returns compared to a theo-
retical normal distribution. The red line represents an ideal normal distribution. It
can be seen that the data broadly follows this line, indicating a similarity to a normal
distribution, but with notable deviations. The points at the extremes, particularly
for the lower and upper quantiles, move away from the red line, suggesting thicker
tails than normal. This implies a more frequent occurrence of extreme returns than
predicted by the normal distribution, typical of financial data with risks of unusual
losses or gains. The deviations observed in the QQ-plot, particularly the thicker
tails, confirm the results of the Jarque-Bera test carried out earlier.

Figure 11: QQ-Plot on NVS
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3.5 Fitting distributions on returns

In order to take into account the various characteristics of the returns observed
above, we need to choose a distribution that takes into account both the fat tails
and the asymmetry of the returns. We will therefore adapt a normal distribution,
a t-student distribution and a skewed-t distribution to the returns in order to see
which models the returns as closely as possible.

Figure 12: Distribution Fits on NVS

The Akaike Information Criterion (AIC) allows us to determine which distribu-
tion is best suited to the returns.

We find that the Student’s t distribution and the skewed t distribution come
out on top, with very little difference, with the skewed t distribution being slightly
better. This is due to the fact that the positive skewness of daily returns is very
low (0.025). The lower the AIC value, the better the fit of the distribution to the
returns.

Table 5: Statistics of distribution fits

Akaike Information Criterion Value
Normal -39156.18
t-Student -40136.55
t-Skewed -40136.68

The parameters calculated for the t-skewed distribution (adapted to the period
1997 to 2023) correspond to df = 3.68, nc = −0.08, µ = 0.00 et σ = 0.01.
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3.5.1 Observation on nc parameter

We can see that the non-centrality parameter nc in a t-skewed distribution does not
correspond directly to the skewness calculated on historical returns (0.025). This
parameter does not measure asymmetry in the same way as skewness. Indeed, nc

adjusts the distribution to better capture data characteristics such as skewness and
heavy tails, but does not serve solely to measure skewness as does the skewness
coefficient. The skewness calculation is a descriptive measure that assesses the
asymmetry of the data distribution around its mean, indicating whether the tails
are longer on one side or the other of the mean. In contrast, the nc parameter in
an adjusted distribution is used to optimise this fit, taking into account not only
the skewness but also other aspects of the data to minimise the error between the
theoretical distribution and the observations. So, although the two measures address
data skewness, they do so in different ways and with different objectives, which is
why they do not necessarily coincide.
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3.6 Autocorrelation Test - Ljung-Box test

The table below compiles the results of Ljung-Box tests carried out on different types
of financial data: returns, squared returns and absolute returns, analysed at various
time frequencies, i.e. daily, monthly and annual. These tests aim to identify the
existence of autocorrelation in the data, a phenomenon where values in a time series
are correlated with their own past values at different intervals or ‘lags’. These results
provide a basis for understanding the dynamics of time dependence and volatility
of returns, which are essential for financial modelling and risk management.

Table 6: Combined Results of Ljung-Box Tests

Lag 1 Lag 2 Lag 3
Returns
Daily 6.14 (p=0.01) 6.15 (p=0.05) 6.98 (p=0.07)
Monthly 0.59 (p=0.44) 0.60 (p=0.74) 2.78 (p=0.43)
Annually 1.59 (p=0.21) 7.49 (p=0.02) 10.04 (p=0.02)
Squared Returns
Daily 277.47 (p=0.00) 654.93 (p=0.00) 858.92 (p=0.00)
Monthly 0.00 (p=1.00) 0.76 (p=0.68) 0.77 (p=0.86)
Annually 0.06 (p=0.81) 0.24 (p=0.89) 0.71 (p=0.87)
Absolute Returns
Daily 222.14 (p=0.00) 433.34 (p=0.00) 624.36 (p=0.00)
Monthly 0.02 (p=0.88) 1.02 (p=0.60) 1.07 (p=0.78)
Annually 0.20 (p=0.66) 0.28 (p=0.87) 1.20 (p=0.75)

3.6.1 Ljung-Box test formula

The test formula is as follows:

Q = n(n + 2)
h∑

k=1

ρ̂2
k

n − k

where:

• n represents the number of observations in the time series.

• h is the number of lags for which autocorrelations are calculated.

• ρ̂k is the autocorrelation estimated at lag k.
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3.6.2 Interpretation of results

The daily results of the Ljung-Box test for returns, squared returns and absolute
returns reveal significant insights into the autocorrelation and volatility of the data
analysed.

For daily returns, the Ljung-Box test values indicate significant autocorrelation
at lags 1 and 2 with p-values of 0.01 and 0.05, respectively. This suggests that
one day’s returns have some dependence on the returns of previous days. However,
at lag 3, this autocorrelation becomes insignificant (p-value of 0.07), which could
indicate that the influence of previous days’ returns diminishes over time.

The results for daily squared returns show extremely high test statistics with p-
values of zero at all three lags. This confirms the presence of volatility clusters in the
data. In other words, days with large variation tend to be followed by other days with
large variation, indicating significant persistence in the volatility of returns. This
observation is crucial for financial modelling, as it suggests that a model capable of
capturing this volatility, such as a GARCH model, would be appropriate.

Finally, daily absolute returns also show significant autocorrelation with p-values
of zero for the three lags tested. This result confirms that the magnitude of variations
in returns also exhibits significant autocorrelation, reinforcing the idea that periods
of high volatility are clustered.

In conclusion, these analyses indicate that not only returns, but also their volatil-
ity and the magnitude of their variations are autocorrelated at the daily level. This
justifies the use of models such as GARCHs to better forecast future returns and
their volatility, taking into account both auto-correlation in returns and persistence
in volatility variations. These results also highlight the importance of models that
can adapt to conditional volatility for more effective risk management.
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3.6.3 Cluster of volatility

When analysing the graphs of Novartis log returns and volatility, a visual observation
of the data can enrich the statistical interpretations provided by tests such as the
Ljung-Box.

By observing the graphs, it is possible to see clusters of volatility. These periods
of high volatility, such as those seen around 2008 and 2020, coincide with major
financial crises or significant events affecting the company, which could logically
lead to autocorrelation in daily returns.

The six-month moving average chart clearly illustrates these periods of increased
volatility and suggests that returns are not independent from one day to the next,
but rather that volatility in one period tends to influence that of subsequent periods.
This visual observation of the data therefore supports the idea that the results of
the Ljung-Box test indicating autocorrelation are not simply a statistical artefact,
but reflect real market behaviour.

Thus, by combining the visual analysis with the results of the Ljung-Box test,
we can visually confirm the existence of autocorrelation in Novartis returns.

Figure 13: NVS Volatility
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3.7 GARCH Model settings

A GARCH model, which stands for generalised conditionally heteroscedastic autore-
gressive model, is a statistical tool used mainly to analyse and predict the volatility
of financial time series, such as share prices or exchange rates. This model is an
extension of the ARCH model (conditionally heteroscedastic autoregressive model)
developed by Robert Engle, for which he received the Nobel Prize in Economics.
The GARCH model allows the variance of a time series to be modelled as a function
of its past values and past variances.

In the context of a GARCH(p, q) model, the parameters ‘p’ and ‘q’ play crucial
roles. The parameter ‘p’ represents the number of autoregressive variance terms,
i.e. it indicates how many previous periods of the variance series are used to predict
the current variance. On the other hand, the ‘q’ parameter refers to the number
of moving average terms, including how many previous periods of squared errors
(which reflect shocks or innovations in the variance) are taken into account in the
model. The combination of these two parameters enables the GARCH model to
capture both the persistence in volatility and the effects of recent shocks, providing
a rich and flexible representation of the temporal dynamics of volatility.

The formula for a GARCH(p, q) model is given by :

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j (1)

where :

• σ2
t is the variance conditional at time t, representing the expected variance

based on the information available up to t − 1.

• ω is a constant term which ensures that the conditional variance is always
positive.

• ∑p
i=1 αiϵ

2
t−i is the sum of the last p squared error terms, weighted by the

αi parameters. These terms reflect the effect of past shocks on the current
variance.

• ∑q
j=1 βjσ

2
t−j represents the sum of the last q conditional variances, weighted

by the βj parameters, making it possible to measure the persistent effect of
past variances on the current variance.

The use of the Ljung-Box test played a crucial role in our analysis of Novartis
returns, highlighting the need to consider autocorrelation, in particular volatility
clustering, when modelling these data.
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Given these results, it becomes imperative to model this autocorrelation in order
to obtain more accurate and efficient forecasts. Consequently, we plan to adopt an
approach based on several GARCH models. Each GARCH model will be configured
with different orders of autoregressive terms and moving averages, allowing us to
compare their ability to model the volatility of returns.

To determine the most appropriate model, we will use the Akaike Information
Criterion (AIC). The AIC measures both the goodness of fit of the model and its
complexity, penalising models that use an excessive number of parameters. A lower
AIC indicates a better balance between the complexity of the model and its fit to
the observed data. By selecting the GARCH model with the lowest AIC, we will
be able to optimise our modelling of Novartis returns while taking into account the
autocorrelation demonstrated by the Ljung-Box test.

Table 7: AIC values for different GARCH models as a function of orders p and q

AIC of GARCH(p,q) p=1 p=2 p=3
q=1 -40716.35 -40693.80 -40688.68
q=2 -40703.78 -40691.75 -40678.95
q=3 -40748.63 -40725.74 -40708.94

The table presented shows the AIC values for different GARCH models with
varying combinations of p (order of volatility autoregressive terms) and q (order of
innovation moving averages).

Looking at the data, the GARCH(1,3) model has the lowest AIC (-40748.63),
closely followed by the GARCH(2,3) model with an AIC of -40725.74. Although the
GARCH(2,3) model shows a good fit, its AIC is slightly higher, indicating potential
complexity without proportional improvement in fit compared to the GARCH(1,3).

Thus, based on the AIC criterion and the values provided, the GARCH(1,3)
model should be chosen to model Novartis returns, as it offers the best balance
between data fit and model complexity.

This graph shows a comparison between the observed daily volatility of Novartis
returns (in pink) and the conditional volatility estimated by the GARCH(1,3) model
(in blue) from 1997 to 2024. The GARCH(1,3) model is applied to historical data
to estimate the conditional volatility of share returns.

Observation of the graph reveals that the GARCH(1,3) model succeeds in fol-
lowing the general trend in daily volatility, capturing periods of lower volatility
particularly well. This ability to model volatility in calm periods is crucial for ef-
fective risk management in finance. The model also shows some responsiveness to
volatility spikes, although it does not always capture the maximum amplitude of
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Figure 14: Conditionnal Volatility

these spikes, which is typical of GARCH models due to their conditional nature and
dependence on past information.

In addition, areas where daily volatility greatly exceeds the modelled conditional
volatility could indicate external events or market shocks not anticipated by the
model based solely on historical data. This illustrates an inherent limitation of
GARCH models: their ability to forecast is strongly conditioned by the volatility
patterns already observed and less effective in situations of market disruption or
significant macroeconomic announcements.

In sum, the GARCH(1,3) model demonstrates a good ability to track the dy-
namics of Novartis volatility over the long term, providing a valuable tool for risk
assessment and financial decision-making. However, ongoing monitoring and adjust-
ments to the model may be required to maintain its relevance in the face of changing
market conditions.
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3.8 Monte-Carlo simulation on Returns

As part of our study, we have implemented a Monte Carlo simulation comprising
10,000 trajectories to analyse the evolution of a share price. The starting point of
this simulation is the share price at the close of 2023, and it extends over 252 trading
days, roughly the equivalent of one trading year (to reach the close of 2024).

To strengthen the reliability of our projections, various statistical parameters
have been carefully adjusted. In particular, we selected the GARCH(1,3) model after
testing several variants for modelling return volatility. In addition, we parameterised
a skewed Student’s t distribution to better reflect the asymmetries and thick tails
observed in real return distributions.

Figure 15: MCS on NVS

On the simulation chart, the median of projected prices is drawn as a solid black
line. This median line helps us to understand the central tendency of the projections
over time. At the same time, the actual Novartis share price is indicated by the green
line, providing a direct point of comparison with our simulations.

Below the main graph, a histogram of the final prices estimated by the Monte-
Carlo simulation is presented. This histogram is fitted by an asymmetric Student’s
t distribution, which illustrates the distribution of possible outcomes at the end of
the simulated period. This adjustment is essential for parametric risk management
applications, enabling extreme risks and potential loss scenarios to be assessed more
accurately.
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Returns rt follow a t-skewed distribution, where volatility is modelled by a
GARCH model:

rt ∼ ST (µ, σ(t), γ, ν)

The relationship between the current price and the previous price using returns
is given by :

Pt = Pt−1 × ert

where Pt is the price at time t, Pt−1 is the price at time t − 1, and rt is the log
return.

3.8.1 Observations in relation to empirical averages and medians

In this Monte Carlo Simulation (MCS) analysis for the projection of a share price
over a one-year period, the median of the projected trajectories follows an apparently
linear trend. This median projection does not coincide with the values obtained by
conventional statistics, such as empirical annualised returns, whose averages and
medians are 5.091% and (0.025*252 =) 6.3%, respectively. It also diverges from
the results obtained by calculations based on an annual frequency, with values of
3.918%. and 5.872%.

This study highlights the importance of numerical simulations in assessing equity
returns. The median of the simulated prices, reflecting a return of 8.46%, demon-
strates that numerical simulations can reveal price behaviour that is not evident via
traditional statistical analysis. These simulations incorporate a wide range of possi-
ble scenarios, offering a more comprehensive estimate of potential risks and returns,
which diverge significantly from approaches limited to historical data.

The use of these simulations is essential for investors and analysts, as they provide
an in-depth perspective on potential volatility and price movements, essential for risk
management and strategic decision-making. The graph of the histogram of simulated
final prices and the distribution fitted to an asymmetric Student’s t distribution
provides an effective way of visualising the dispersion of simulated results. This
visualisation highlights the risks and asymmetric returns that simple mean or median
calculations fail to capture.
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4 Statistics Final Price Distribution
The table below shows the statistics applied to the one-year Novartis share prices of
the 2025 projections, obtained from the two Monte Carlo simulations. The results
highlight the difference in risk.

Table 8: Statistics of final prices

Statistic MCS Stock Returns MCS FCFF
Mean 110.22 111.04
Median 109.51 106.62
Standard Deviation 22.03 32.44
Minimum 54.96 37.49
Maximum 199.34 335.30
IQR 28.11 41.18
Skewness 0.64 0.94
Kurtosis 1.13 1.81
VaR 95% 77.74 66.33
CVaR 95% 70.72 58.83

The difference between the mean and the median in the MCS results for FCFF
is more pronounced than in the MCS results for stock returns. This difference is
a proxy for skewness. Other statistics, such as standard deviation, maximum and
minimum values, and risk metrics (VaR and CVaR), show that the model based on
FCFF includes greater variability and uncertainty. The significantly higher standard
deviation in the FCFF model indicates a greater dispersion of results around the
mean, which means that forecasts can vary considerably from one scenario to an-
other. In addition, the lower VaR and CVaR show that in the worst-case scenarios,
the potential losses are greater, underlining a greater view of risk.

It is important to note that the FCFF model is less robust than the returns
model, largely because it was calibrated with a limited amount of available data.
In other words, the model has been heavily influenced by extreme values in FCFF.
This results in modelling of fairly strong variations in FCFF, which can lead to less
reliable forecasts. This reduced robustness is problematic because it can make the
model more vulnerable to error or bias.
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5 Backtesting In-Out Sample
5.1 Methodology

In this study, the In-Out Sample backtesting methodology is used to assess the
accuracy of the statistical models used, by adapting the sample period to match the
data available up to one year before our estimation point. The actual Novartis price
used is that observed at the projection date, i.e. one year after the end of the last
sample date (backtesting covers the period from 2011 to 2024) This process focuses
on the comparison between the median of the stochastic projections and the actual
Novartis share price, as well as the average of the prices projected by nine major
investment banks (Barclays, Bank of America, Deutsche Bank, Jefferies, JP Morgan
Chase, Morgan Stanley, Société Générale, UBS, and Vontobel). These banks were
chosen solely on the basis of the data available on Refinitiv Eikon.

The aim is to compare these predictions with actual market and analyst per-
formance and to provide a comparative perspective on the accuracy of different
estimation methods. All the backtesting results tables are available in the appen-
dices, providing a detailed analysis of comparative performance over the test period
from 2010 to 2024.

5.2 Results

The results of the study indicate that the two models used underestimate and over-
estimate the real price in 50% of cases respectively, suggesting that the median of
the estimates is correctly placed. In contrast, analysts tend to overestimate the price
in 73% of situations, revealing a more pronounced optimism in their projections.

To observe the accuracy of the three estimation methods, we will use the average
absolute deviations between the estimated price and the actual price. The use of
average absolute deviations between the estimated price and the actual price is
essential because this measure eliminates the risk of compensation between negative
and positive errors. This is because, unlike deviations which can cancel each other
out when averaged, absolute deviations maintain the integrity of each error, thus
faithfully reflecting the total magnitude of the deviations without directional bias.

These deviations are as follows: 14.6% for the analysts’ target prices, 11.4% for
the median of the share price projections, and 10.4% for the estimate based on the
median of the FCFF projections.

The relative stability of the Novartis share price favours these models, particu-
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larly in contexts where projections tend to underestimate the performance of com-
panies experiencing recent and marked growth.

When the share price for the year is stable with a slight increase, the models,
based on average upward trends, anticipate the price fairly well, approaching the
median or mean of the distribution. It appears that the average projections are
more conservative estimates than those of analysts.

The statistical analysis underlines that if the model is well parameterised and
shows a strongly leptokurtic distribution with low assymetry, estimation by the
median or mean as a ‘point’ value of estimation would make sense. However, there
is too much uncertainty, even on a company considered as stable, to adopt this point
of view.

There is a difference between the median prices of the two models, with the
FCFF model systematically showing a slightly lower median price than the MSC
model, which could be linked to the assumptions concerning the terminal growth
rate.

It would be advisable to carry out a sensitivity analysis on this terminal growth
rate to better understand its impact on the estimates, thus requiring a three-
dimensional visualisation to illustrate these dynamics.

5.3 Meaning on the market efficiency hypothesis

We find that the use of a statistical model, fed solely by two internal company
time series (stock price and FCFF), based on empirical finance approaches, offers
neither better nor worse significant performance in estimating the future share price
(calculated from the median of the projected stochastic paths) compared with the
average target price established by analysts. The results of this study seem to
corroborate the semi-strong efficient market hypothesis.

This hypothesis holds that financial asset prices tend to reflect quickly and com-
pletely all available public information, such as market data, financial reports and
news. Empirical studies tend to corroborate this idea, suggesting that it is diffi-
cult for an investor to outperform the market by relying solely on this information,
as it is generally already incorporated into prices. However, there are price anoma-
lies, particularly during periods of speculation or bubble formation, which show that
markets can sometimes deviate from this assumption, offering atypical opportunities
for gains.
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5.4 Complementarity with analysts

Despite the fact that stochastic projections can sometimes match or approach the
analysts’ estimates, the role of analysts remains essential in the financial ecosystem
for several reasons:

1. Synthesis of complex information : Analysts reduce a wide range of fi-
nancial, economic and sectoral information into accessible recommendations,
helping investors to make informed and reasoned decisions.

2. Sectoral expertise : They offer valuable insights based on in-depth knowl-
edge of the sectors and companies they follow, a dimension that stochastic
models do not always fully capture.

3. Long-term outlook : Analysts often take into account long-term prospects
and corporate strategies, not just short-term price movements.

4. Market Influence : Analysts’ opinions can significantly influence market
perceptions and stock valuations, playing an active role in market dynamics.

5. Diversity of opinion : Analysts’ estimates provide a diversity of viewpoints
which enrich the debate and investment decisions on the financial markets.

In short, stochastic projections, while valuable for their statistical approach,
complement rather than replace analysts’ assessments. Analysts bring a human and
contextual perspective that remains invaluable for investment decisions, illustrating
the importance of combining quantitative and qualitative analyses for a complete
view of the market.
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5.5 Analyst bias

However, it is important to bear in mind the presence of ‘analyst bias’, a systematic
tendency for financial analysts to make potentially biased predictions or recommen-
dations. This bias can be influenced by a variety of factors and can sometimes lead
to less objective or inaccurate assessments of the market. Here are some common
sources of analyst bias:

1. Confirmation bias: Analysts may favour information that confirms their
pre-existing beliefs or previous analyses, downplaying or ignoring data that
could contradict their views.

2. Conflicts of interest: Analysts working for institutions that have commercial
relationships with the companies they cover may be influenced to give more
favourable recommendations. For example, if a bank hopes to win business
from a company, its analysts may be encouraged to give a positive assessment
of that company’s shares.

3. Optimism bias: Research shows that analysts are often over-optimistic in
their forecasts of earnings and share performance. This may be due to a
relationship with the management of the companies analysed or a tendency to
maintain good relations with these companies.

4. Institutional pressures: Analysts may be under pressure from their em-
ployers to produce reports that support the institution’s business objectives
or trading strategies.

5. Recency bias: This occurs when analysts give too much weight to recent
events at the expense of longer-term trends or broader contexts, which can
lead to recommendations that are not aligned with a company’s long-term
prospects.

6. Herd effect: Some analysts may follow majority opinions or the recommen-
dations of other analysts without conducting a full independent assessment,
to avoid deviating significantly from the consensus, which may be perceived
as an occupational hazard.

In our analysis, we identified trends corresponding to these biases, in particular
excessive optimism and too strong a consensus, manifested by a normal distribution
with a surprisingly low standard deviation.
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6 Conclusion
In this study, we have attempted to establish the distribution of future Novartis
prices for the end of 2024. To do this, we empirically analysed available data from
1997 to 2023. Two approaches were adopted: the first involved projecting future
FCFF, discounting them using the DCF method and deriving final prices. The
second approach involved modelling stock market returns to derive final prices. Both
methods used Monte Carlo simulations.

This work illustrated that the actual daily stock return, denoted rt, corresponds
to a random variable whose distribution law, the number of parameters and the val-
ues of these parameters remain undetermined. Moreover, the complexity is increased
by the fact that these parameters vary daily.

On the basis of projections of these daily returns, it is possible to determine
the final prices one year ahead, thus arriving at a distribution of final prices for this
period. Our estimates, based on numerical simulations, suggest that this distribution
may approach a skewed-t.

6.1 Distribution of actual daily returns and one-
year price

The final one-year price of the Novartis share (P252) is a random variable that is
mathematically determined by the daily stock market returns of Novartis, which
are also random variables whose parameters are dynamic over time. This can be
formulated as follows:

P252 = P0 ×
252∏
t=1

ert , rt ∼ D(θt)

• where θt is a vector of unknown time-dependent parameters,

• and D is an unknown distribution.

The actual distribution of the final price over a year, which is impossible to
determine exactly, can be written as :

P252 ∼ D(Θ)

where Θ is a distinct parameter vector, different from the θt used for daily returns.
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6.2 Our approximation of real distributions

We have modelled the daily returns of Novartis according to a skewed-t distribution
with dynamic volatility using a GARCH model. This is presented as follows:

The return rt follows a Skewed-t distribution with the following parameters:

rt ∼ Skewed-t(µ, σt, nc, df)

where

• µ is the mean of the distribution,

• σt is the standard deviation, which may vary over time,

• nc is the asymmetry coefficient,

• df is the degree of freedom of the distribution

The final one-year price, P252 was approximated in both methods via a Skewed-t
distribution according to the following equation:

P252 ∼ Skewed-t(µ, σ, nc, df)

6.3 Distribution of analysts’ target prices

In the field of financial analysis, analysts often establish ‘target prices’ for shares,
representing their estimates of the price of a share one year ahead. These estimates
are based on various economic models and assumptions, and vary from one analyst
to another depending on their interpretation of the data and the company’s future
prospects.

If we compile all these point estimates of one-year target prices provided by
different analysts for a given share, it is possible to analyse them statistically to
observe the distribution of these estimates. Theoretically, if the number of estimates
is large enough and the individual biases of the analysts are independent of each
other, these target prices could tend towards a normal distribution. This normality
would be due to the centralisation of the different valuations around a mean, with
a standard deviation that reflects the dispersion of opinions.

It is assumed that 252-day target prices follow a normal distribution, with the
following parameters:

’Target prices’ ∼ N (µ, σ2)

where
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• µ is the average of the target prices,

• σ2 is the variance of these prices.

6.4 Comparison of one-year price distributions

Given that it is intrinsically impossible to predict the exact price of a share one year
from now, because fluctuations in the financial markets, influenced by a multitude
of economic, political and social factors, make each future price the outcome of a
random process, attempting to estimate a specific price at a future date is not only
imprecise but also uninformative. This is often reflected in the practice of analysts
formulating ‘target prices’, which are supposed to represent future estimates. Al-
though common, this approach does not capture the complexity and uncertainty
inherent in the markets.

In the backtesting for this study, we in turn considered establishing a one-year
target price for Novartis shares using the median of projected prices. However, we
realised that these approaches, while popular, lack a robust scientific basis in volatile
and unpredictable markets. Rather than providing a precise price, we need to move
towards a final price distribution approach.

We have focused on a more robust and informative approach by modelling the
one-year price distribution. This method does not allow us to predict an exact value,
but to understand and characterise all possible outcomes, encapsulated in a proba-
bility distribution. Using this model, we can estimate the probability that a share
price will fall within a certain range, offering a richer, more nuanced perspective on
future market expectations.

The projected price, as a random variable, is best understood through the pa-
rameters of its probability distribution, such as mean, variance, skewness and kurto-
sis. These parameters not only provide information on the expected average price,
but also on volatility and the risk of extreme prices. Ultimately, modelling this
distribution allows investors and analysts to better manage risk and develop more
sophisticated investment strategies tailored to the risk profile.

This research therefore confirms that the best way to understand and forecast
future share prices is not in the quest for precision, but in the precise definition and
in-depth understanding of the probability distribution of prices, which represents as
closely as possible the true random and uncertain nature of financial markets.
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6.4.1 Impossibility of determining the quality of the models

From a formal and theoretical perspective, our objective was to maximize the area
of intersection under the curves between our estimated model of the annual distri-
bution, represented by a Skewed-T distribution ST (x; θ), and the true distribution
D(x; Θ).

Figure 16: All pdf of final prices

Maximizing the intersection area of two parametric distributions is mathemati-
cally formulated as follows:

Maximize
∫ ∞

−∞
min(ST (x; θ), D(x; Θ)) dx

However, given the lack of exact knowledge of the true distribution, our approach
effectively translates into an attempt to optimize the plausibility of our estimate.
In other words, we seek to adjust our model so that it best approximates what we
hypothesize to be the underlying true distribution of the data.
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6.5 Taking speculative positions on statistical con-
victions

A speculative position should be based on the mathematical expectation of gain,
as proposed by Louis Bachelier in his ’Théorie de la Spéculation’, and not on the
median of stochastic projections or a target price derived from a single DCF model.
According to this theory, the stock price should be determined by the mathematical
expectation of its future price, i.e. the average of possible future prices weighted by
their probabilities.

In practice, however, we do not have the exact distribution of the ‘true price’ in
one year’s time. In the absence of this precise distribution, it is necessary to rely
on one’s own assessment of the one-year price curve to estimate this mathematical
expectation.

Thus, the decision to invest should be based on a comparison between the ex-
pected price in one year’s time, according to the investor’s own estimate (E[Pt+252]),
and the current price (Pt). If the mathematical expectation of the future price, ac-
cording to this estimate, is higher than the current price, the mathematical expec-
tation is positive, which suggests a long (buy) position in the asset. On the other
hand, if the mathematical expectation of the future price is lower than the current
price, the mathematical expectation is negative, suggesting a short (sell) position.

Therefore, the mean, E(X) =
∫∞

−∞ xf(x) dx, (and not the median) should be
considered as an indicator of mathematical advantage (because it encapsulates
all the risks by weighting them in a single value) and in no way as a punctual
valuation.
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Appendix
Density Probability for the Skewed-t Distribution

The probability density for a non-central t distribution is given by :

f(x | df, µ, σ) = dfdf/2Γ(df + 1)√
2πΓ(df/2)σdf

(
1 + (x − µ)2

dfσ2

)−(df+1)/2

exp
− µ2

2σ2
(
1 + (x−µ)2

dfσ2

)


where :

• x is the random variable,

• df is the degree of freedom,

• µ is non-centrality,

• σ is the scale,

• Γ is the gamma function.

WACC Formula

The WACC is calculated by weighting the costs of equity and debt by their respective
proportions in the company’s financing structure:

WACC =
(

E

V
× Re

)
+
(

D

V
× Rd

)
where,

• E is the market value of the equity

• D is the market value of the debt

• V is the sum of E and D, so 100%.
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Cost of Equity (CAPM Model)

The cost of equity (Re) is calculated using the CAPM model, defined by the formula:

Re = Rf + β × (ERP ) + CRP

where,

• Rf is the risk-free rate

• β is the leverage beta

• ERP is the market risk premium

• CRP is the country risk premium
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Significance tests for GARCH models

Table 9: Significance of parameters for GARCH(1,1), GARCH(1,2), and
GARCH(1,3)

Coefficient Estimate P-Value Significant at 5%
GARCH(1,1)

ω 0.0000 0.0000 True
α1 0.0498 0.0000 True
β1 0.9263 0.0000 True
η 6.0859 0.0000 True
λ -0.0040 0.7926 False

GARCH(1,2)
ω 0.0000 0.0000 True
α1 0.0500 0.0000 True
β1 0.4650 0.0277 True
β2 0.4650 0.0263 True
η 6.0495 0.0000 True
λ 0.0000 1.0000 False

GARCH(1,3)
ω 0.0000 0.0000 True
α1 0.0789 0.0000 True
β1 0.4496 0.0030 True
β2 0.0543 0.7510 False
β3 0.4050 0.0071 True
η 5.0520 0.0000 True
λ -0.0436 0.0045 True
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Table 10: Significance of parameters for GARCH(2,1), GARCH(2,2), and
GARCH(2,3)

Coefficient Estimate P-Value Significant at 5%
GARCH(2,1)

ω 0.0000 0.0000 True
α1 0.0250 0.0185 True
α2 0.0250 0.0198 True
β1 0.9300 0.0000 True
η 6.1031 0.0000 True
λ 0.0000 1.0000 False

GARCH(2,2)
ω 0.0000 0.0000 True
α1 0.0250 0.0224 True
α2 0.0250 0.0440 True
β1 0.4650 0.2231 False
β2 0.4650 0.2183 False
η 6.0436 0.0000 True
λ 0.0000 1.0000 False

GARCH(2,3)
ω 0.0000 0.0000 True
α1 0.0494 0.0001 True
α2 0.0503 0.0004 True
β1 0.2899 0.0102 True
β2 0.2899 0.0872 False
β3 0.2974 0.0058 True
η 5.8297 0.0000 True
λ -0.0096 0.5355 False
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Table 11: Significance of parameters for GARCH(3,1), GARCH(3,2), and
GARCH(3,3)

Coefficient Estimate P-Value Significant at 5%
GARCH(3,1)

ω 0.0000 0.0000 True
α1 0.0176 0.0639 False
α2 0.0176 0.2939 False
α3 0.0172 0.2021 False
β1 0.9262 0.0000 True
η 6.0771 0.0000 True
λ -0.0050 0.7468 False

GARCH(3,2)
ω 0.0000 0.0000 True
α1 0.0167 0.1768 False
α2 0.0167 0.3714 False
α3 0.0167 0.2312 False
β1 0.4650 0.3580 False
β2 0.4650 0.3529 False
η 6.0374 0.0000 True
λ 0.0000 1.0000 False

GARCH(3,3)
ω 0.0000 0.0000 True
α1 0.0333 0.0001 True
α2 0.0333 0.0010 True
α3 0.0333 0.0430 True
β1 0.2933 0.1986 False
β2 0.2933 0.5394 False
β3 0.2933 0.3216 False
η 5.9026 0.0000 True
λ 0.0000 1.0000 False
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Results of backtesing (Target Price 01.2011)

Actual Price NVS (01.2011) 53$

Analysts Target Price Difference
Barclays 63$ 19%
Bank of America 65$ 23%
Deutsche Bank 62$ 17%
Jefferies 65$ 23%
JP Morgan Chase 69$ 30%
Morgan Stanley 69$ 30%
Société Générale 57$ 8%
UBS 61$ 15%
Vontobel 58$ 9%
Mean 63$ 19%

MCS on stock return 51$ -4%
MCS on FCFF 50$ -6%
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Results of backtesing (Target Price 01.2012)

Actual Price NVS (01.2012) 52$

Analysts Target Price Difference
Barclays 57$ 10%
Bank of America 67$ 28%
Deutsche Bank 60$ 16%
Jefferies 64$ 24%
JP Morgan Chase 61$ 18%
Morgan Stanley 60$ 16%
Société Générale 60$ 16%
UBS 56$ 8%
Vontobel 68$ 31%
Mean 62$ 19%

MCS on stock return 55$ 6%
MCS on FCFF 53$ 2%
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Results of backtesing (Target Price 01.2013)

Actual Price NVS (01.2013) 57$

Analysts Target Price Difference
Barclays 57$ 1%
Bank of America 59$ 3%
Deutsche Bank 60$ 5%
Jefferies 69$ 21%
JP Morgan Chase 63$ 11%
Morgan Stanley 69$ 20%
Société Générale 53$ -8%
UBS 50$ -13%
Vontobel 53$ -7%
Mean 59$ 4%

MCS on stock return 54$ -5%
MCS on FCFF 53$ -7%
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Results of backtesing (Target Price 01.2014)

Actual Price NVS (01.2014) 71$

Analysts Target Price Difference
Barclays 68$ -4%
Bank of America 60$ -15%
Deutsche Bank 72$ 1%
Jefferies 62$ -13%
JP Morgan Chase 66$ -7%
Morgan Stanley 67$ -6%
Société Générale 71$ -1%
UBS 70$ -2%
Vontobel 69$ -3%
Mean 67$ -6%

MCS on stock return 60$ -15%
MCS on FCFF 58$ -18%
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Results of backtesing (Target Price 01.2015)

Actual Price NVS (01.2015) 83$

Analysts Target Price Difference
Barclays 72$ -14%
Bank of America 81$ -2%
Deutsche Bank 75$ -10%
Jefferies 77$ -7%
JP Morgan Chase 75$ -10%
Morgan Stanley 74$ -11%
Société Générale 77$ -7%
UBS 80$ -3%
Vontobel 73$ -12%
Mean 76$ -8%

MCS on stock return 77$ -7%
MCS on FCFF 74$ -11%
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Results of backtesing (Target Price 01.2016)

Actual Price NVS (01.2016) 77$

Analysts Target Price Difference
Barclays 99$ 29%
Bank of America 99$ 29%
Deutsche Bank 100$ 30%
Jefferies 85$ 10%
JP Morgan Chase 117$ 52%
Morgan Stanley 79$ 3%
Société Générale 110$ 43%
UBS 99$ 29%
Vontobel 96$ 25%
Mean 98$ 27%

MCS on stock return 90$ 17%
MCS on FCFF 85$ 10%
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Results of backtesing (Target Price 01.2017)

Actual Price NVS (01.2017) 65$

Analysts Target Price Difference
Barclays 84$ 29%
Bank of America 77$ 19%
Deutsche Bank 98$ 51%
Jefferies 95$ 46%
JP Morgan Chase 84$ 30%
Morgan Stanley 95$ 46%
Société Générale 96$ 48%
UBS 91$ 41%
Vontobel 81$ 24%
Mean 89$ 37%

MCS on stock return 82$ 26%
MCS on FCFF 80$ 23%
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Results of backtesing (Target Price 01.2018)

Actual Price NVS (01.2018) 76$

Analysts Target Price Difference
Barclays 62$ -18%
Bank of America 65$ -15%
Deutsche Bank 95$ 24%
Jefferies 66$ -13%
JP Morgan Chase 68$ -10%
Morgan Stanley 62$ -19%
Société Générale 50$ -35%
UBS 63$ -17%
Vontobel 74$ -3%
Mean 67$ -12%

MCS on stock return 69$ -9%
MCS on FCFF 67$ -12%
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Results of backtesing (Target Price 01.2019)

Actual Price NVS (01.2019) 76$

Analysts Target Price Difference
Barclays 99$ 30%
Bank of America 84$ 11%
Deutsche Bank 67$ -12%
Jefferies 74$ -3%
JP Morgan Chase 88$ 16%
Morgan Stanley 97$ 28%
Société Générale 90$ 18%
UBS 78$ 3%
Vontobel 90$ 18%
Mean 85$ 12%

MCS on stock return 80$ 5%
MCS on FCFF 77$ 1%
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Results of backtesing (Target Price 01.2020)

Actual Price NVS (01.2020) 95$

Analysts Target Price Difference
Barclays 99$ 4%
Bank of America 62$ -35%
Deutsche Bank 71$ -25%
Jefferies 87$ -8%
JP Morgan Chase 90$ -5%
Morgan Stanley 50$ -47%
Société Générale 74$ -22%
UBS 74$ -22%
Vontobel 75$ -21%
Mean 76$ -20%

MCS on stock return 82$ -14%
MCS on FCFF 80$ -16%
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Results of backtesing (Target Price 01.2021)

Actual Price NVS (01.2021) 93$

Analysts Target Price Difference
Barclays 90$ -3%
Bank of America 85$ -9%
Deutsche Bank 95$ 2%
Jefferies 99$ 6%
JP Morgan Chase 99$ 6%
Morgan Stanley 79$ -15%
Société Générale 92$ 1%
UBS 101$ 9%
Vontobel 109$ 17%
Mean 94$ 1%

MCS on stock return 102$ 10%
MCS on FCFF 98$ 5%
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Results of backtesing (Target Price 01.2022)

Actual Price NVS (01.2022) 87$

Analysts Target Price Difference
Barclays 92$ 6%
Bank of America 117$ 34%
Deutsche Bank 105$ 21%
Jefferies 93$ 7%
JP Morgan Chase 102$ 17%
Morgan Stanley 84$ -3%
Société Générale 86$ -1%
UBS 97$ 11%
Vontobel 116$ 33%
Mean 99$ 14%

MCS on stock return 102$ 17%
MCS on FCFF 98$ 13%
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Results of backtesing (Target Price 01.2023)

Actual Price NVS (01.2023) 91$

Analysts Target Price Difference
Barclays 92$ 1%
Bank of America 72$ -21%
Deutsche Bank 65$ -29%
Jefferies 63$ -31%
JP Morgan Chase 85$ -7%
Morgan Stanley 70$ -23%
Société Générale 90$ -1%
UBS 94$ 3%
Vontobel 59$ -35%
Mean 77$ -16%

MCS on stock return 94$ 3%
MCS on FCFF 92$ 1%
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Results of backtesing (Target Price 01.2024)

Actual Price NVS (01.2024) 101$

Analysts Target Price Difference
Barclays 108$ 7%
Bank of America 104$ 3%
Deutsche Bank 98$ -3%
Jefferies 97$ -4%
JP Morgan Chase 110$ 9%
Morgan Stanley 106$ 5%
Société Générale 106$ 5%
UBS 104$ 3%
Vontobel 103$ 2%
Mean 104$ 3%

MCS on stock return 98$ -3%
MCS on FCFF 95$ -6%
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Complementary analysis of the VIX

Figure 17: NVS & VIX

Figure 18: Correlation between NVS and VIX
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Varing Moments

Figure 19: Varing Moments
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